TSPH EduCare Private Limited

PHYSICS

1) According to law of equipartition of energy the molar specific heat of a diatomic gas at constant volume where the molecule has one additional vibrational mode is :
a) $\frac{3}{2} R$
b) $\frac{9}{2} R$
c) $\frac{5}{2} R$
d) $\frac{7}{2} R$
2) The light rays from an object have been reflected towards an observer from a standard flat mirror, the image observed by the observer are:-

A Real
B. Erect

C Smaller in size then object
D. Laterally inverted

Choose the most appropriate answer from the options given below:
a) A, C, and D Only
b) A and D Only
c) B and D Only
d) B and C Only
3) A particle executes simple harmonic motion between $x=-A$ and $x=+A$. If time taken by particle to go from $\mathrm{x}=\mathbf{0}$ to $\frac{A}{2}$ is $\mathbf{2} \mathbf{s}$; then time taken by particle in going from $x=\frac{A}{2}$ to A is
a) 3 s
b) 1.5 s
c) 2 s
d) 4 s
4) Match List I with List II

	List I		List II
a.	Isothermal process	i.	Work done by the gas decreases internal energy
b.	Adiabatic process	ii.	No change in internal energy
c.	Isochoric Process	iii.	The absorbed goes partly increase internal energy and partly to do work
d.	Isobaric Process	iv.	No work is done on or by the gas

Choose the correct answer from the options given below :
a) a-ii, b-i, c-iv, d-iii
b) a-i, b-ii, c-iv, d-iii
c) a-ii, b-i, c-iii, d-iv
d) $a-i, b-i i, c-i i i i, d-i v$
5) The resistance of a wire is $\mathbf{5} \boldsymbol{\Omega}$. It's new resistance in ohm if stretched to 5 times of it's original length will be :
a) 5
b) 625
c) 125
d) 25
6) Consider a block kept on an inclined plane (inclined at 45°) as shown in the figure. If the force required to just push it up the inclined is 2 times the force required to just prevent it from sliding down, the coefficient to friction between the block and inclined plane (μ) is equal to :

a) 0.50
b) 0.33
c) 0.60
d) 0.25
7) Match List I with List II

	List I		List II
a.	Young's Modulus (Y)	i.	$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-1}\right]$
b.	Co-efficient of Viscosity ($\eta)$	ii.	$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}\right]$
c.	Planck's Constant (h)	iii.	$\left[\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]$
d.	Work Function (φ)	iv.	$\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$

Choose the correct answer from the options given below :
a) a-ii, b-iii, c-iv, d-i
b) a-i, b-iii, c-iv, d-ii
c) a-iii, b-i, c-ii, d-iv
d) a-i, b-ii, c-iii, d-iv
8) The energy levels of an atom is shown in figure.

Which one of these transitions will result in the emission of a photon of wavelength 124.1 nm ?

a) C
b) B
c) A
d) D
9) Given below are two statements:

Statement I: Stopping potential in photoelectric effect does not depend on the power of the light source.

Statement II: For a given metal, the maximum kinetic energy of the photoelectron depends on the wavelength of the incident light.

In the light of above statements, choose the most appropriate answer from the options given below :

Both Statement I and Statement II are
a) incorrect
b)

Statement I is incorrect but statement II is correct
Both Statement I and statement II are
c) correct
d)

Statement I is correct but statement II is d) incorrect
10) A wire of length 1 m moving with velocity $8 \mathrm{~m} / \mathrm{s}$ at right angles to a magnetic field of 2 T . The magnitude of induced emf, between the ends of wire will be
a) 16 V
b) 8 V
c) 12 V
d) 20 V
11) The graph between two temperature scales \mathbf{P} and Q is shown in the figure. Between upper fixed point and lower fixed point there are 150 equal divisions of scale P and 100 divisions on scale Q. The relationship for conversion between the two scales is given by :

a) $\frac{t_{Q}}{100}=\frac{t_{P}-30}{150}$
b) $\frac{t_{Q}}{150}=\frac{t_{P}-180}{100}$
c) $\frac{t_{P}}{100}=\frac{t_{Q}-180}{150}$
d) $\frac{t_{P}}{180}=\frac{t_{Q}-40}{100}$
12) Every planet revolves around the sun in an elliptical orbit:-
A. The force acting on a planet is inversely proportional to square of distance from sun
B. Force acting on planet is inversely proportional to product of the masses of the planet and the from sun.
C. The Centripetal force acting on the planet is directed away from the sun.
D. The square of time period of revolution of planet around sun is directly proportional to cube of semi-major axis of elliptical orbit.

Choose the correct answer from the options given below:
a) B and C only
b) A and C Only
c) A and D only
d) C and D only
13)

Match List I with List II

	List I		List II
a.	Troposphere	i.	Approximate 65- $75 \quad$ km over Earth's surface
b.	E-Part of Stratosphere	ii.	Approximate $300 \quad$ km over Earth's surface
c.	F2-Part of Thermosphere	iii.	Approximate 10 km over Earth's surface
d.	D-Part of Stratosphere	iv.	Approximate $100 \quad$ km over Earth's surface

Choose the correct answer from the options given below:
a) a-i, b-iv, c-iii, d-ii
b) a-iii, b-iv, c-ii, d-i
c) a-iii, b-ii, c-i, d-iv
d) a-i, b-ii, c-iv, d-iii
14) A body of mass m is taken from earth surface to the height ' h ' equal to twice the radius of earth (R_{e}). The increase in potential energy will be:
($\mathrm{g}=$ acceleration due to gravity on the surface of Earth)
a) $3 m g R_{e}$
b) $\frac{1}{3} m g R_{e}$
c) $\frac{1}{2} m g R_{e}$
d) $\frac{2}{3} m g R_{e}$
15) For a moving coil galvanometer the deflection in the coil is 0.05 rad when a current of 10 mA is passed through it. If the torsional constant of suspension wire is $4.0 \times 10^{-5} \mathrm{~N} \mathrm{~m} \mathrm{rad}^{-1}$, the magnetic field is 0.01 T and the number of turns in the coil is 200, the area of each turn (in cm^{2}) is:
a) 1.0
b) 2.0
c) 1.5
d) 0.5
16) Statement I: When a Si sample is doped with Boron, it becomes P-type and when doped by Arsenic it becomes N-type semiconductor such that P-type has excess holes and N -type has excess electrons.

Statement II: When such P-type and N-type semi-conductors, are fused to make a junction, a current will automatically flow which can be detected with an externally connected ammeter.

In the light of above statements, choose the most appropriate answer from the options given below :

Both Statement I and Statement II are
a) incorrect
b)

Both Statement I and statement II are correct
c)

Statement I is incorrect but statement II is
c) correct

Statement I is correct but statement II is
d) incorrect
17) A point charge of $10 \mu \mathrm{C}$ is placed at the origin. At what location on the X -axis should a point charge of $40 \mu \mathrm{C}$ be placed so that the net electric field is zero at $\mathbf{x}=\mathbf{2} \mathbf{c m}$ on the X-axis?
a) $x=-4 \mathrm{~cm}$
b) $x=8 \mathrm{~cm}$
c) $x=6 \mathrm{~cm}$
d) $x=4 \mathrm{~cm}$
18) The distance travelled by a particle is related to time t as $x=4 t^{2}$. The velocity of the particle at t $=5 \mathrm{~s}$ is :
a) $20 \mathrm{~ms}^{-1}$
b) $40 \mathrm{~ms}^{-1}$
c) $8 \mathrm{~ms}^{-1}$
d) $25 \mathrm{~ms}^{-1}$
19) Two objects are projected with same velocity ' u ' however at different angles α and β with the horizontal. If $\alpha+\beta=90^{\circ}$, the ratio of horizontal range of the first object to the $2^{\text {nd }}$ object will be :
a) $1: 1$
b) $1: 2$
c) $2: 1$
d) $4: 1$
20)

	List I		List II
a.	gauss's Law Electrostatics	i.	$\oint \vec{E} \cdot d \mathrm{l}$ $=-\frac{d \phi_{B}}{d t}$
b.	Faraday's Law	ii.	$\oint \vec{B} \cdot d \vec{A}=0$
c.	Gauss's Law in Magnetism	iii.	$\oint \vec{B} \cdot d \mathbf{l}=$ $\mu_{0} i_{c}+\mu_{0} \in_{0} \frac{d \phi_{E}}{d t}$
d.	Ampere- Maxwell Law	iv.	$\oint \vec{E} \cdot d \vec{s}$ $=-\frac{q}{\epsilon_{0}}$

Choose the correct answer from the options given below:
a) a-ii, b-iii, c-iv, d-i
b) a-i, b-ii, c-iii, d-iv
c) a-iii, b-iv, c-i, d-ii
d) a-iv, b-i, c-ii, d-iii
21) A series LCR circuit is connected to an AC source of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The circuit contains a resistance $R=80 \Omega$, an inductor of inductive reactance $X_{L}=70 \Omega$, and a capacitor of capacitive reactance $X_{C}=130 \Omega$. The power factor of circuit is $\frac{x}{10}$. The value of \mathbf{x} is :)
22) Two long parallel wires carrying currents 8 A and 15A in opposite directions are placed at a distance of 7 cm from each other A point P is at equidistant from both the wires such that the lines joining the point P to the wires are perpendicular to each other. The magnitude of magnetic field at \mathbf{P} is \qquad $\times 10^{-6} \mathrm{~T}$. (Given $: \sqrt{2}=1.4)$)
23) A body of mass 1 kg collides head on elastically with a stationary body of mass 3 kg . After collision, the smaller body reverses its direction of motion and moves with a speed of $2 \mathrm{~m} / \mathrm{s}$. The initial speed of the smaller body before collision is \qquad ms^{-1}.)
24) A nucleus disintegrates into two smaller parts, which have their velocities in the ratio 3:2. The ratio of their nuclear sizes will be $\left(\frac{x}{3}\right)^{\frac{1}{3}}$. The value of ' x ' is :
)
25) If a solid sphere of mass $\mathbf{5 k g}$ and a disc of mass 4 kg have the same radius. Then the ratio of moment of inertia of the disc about a tangent in its plane to the moment of inertia of the sphere about its tangent will be $\frac{x}{7}$. The the value of x is
)
26) A capacitor has capacitance $5 \mu \mathrm{~F}$ when it's parallel plates are separated by air medium of thickness d. A slab of material of dielectric constant 1.5 having area equal to that of plates but thickness $\frac{d}{2}$ is inserted between the plates. Capacitance of the capacitor in the presence of slab will be \qquad $\mu \mathrm{F}$.)
27) A train blowing a whistle of frequency 320 Hz approaches an observer standing on the platform at a speed of $66 \mathrm{~m} / \mathrm{s}$. The frequency observed by the observer will be (given speed of sound $=330 \mathrm{~ms}^{-1}$) \qquad Hz .)
28) Two cells are connected between points A and B as shown. Cell I has emf of 12 V and internal resistance of 3Ω. Cell 2 has emf of 6 V and internal resistance of 6Ω. An external resistor R of 4Ω is connected across A and B. The current flowing through R will be \qquad A.

)
29) An object is placed on the principal axis of convex lens of focal length 10 cm as shown. A plane mirror is placed on the other side of lens at a distance of $\mathbf{2 0} \mathbf{~ c m}$. The image produced by the plane mirror is 5 cm inside the mirror. The distance of the object from the lens is
\qquad cm.

30) A spherical drop of liquid splits into 1000 identical spherical drops. If u_{i} is the surface energy of the original drop and u_{f} is the total surface energy of the resulting drops, the (ignoring evaporation) $\frac{u_{f}}{u_{i}}=\left(\frac{10}{x}\right)$. The value of x is \qquad)

CHEMISTRY

31) Potassium dichromate acts as a strong oxidizing agent in acidic solution. During this process, the oxidation state changes from
a) +6 to +3
b) +6 to +2
c) +3 to +1
d) +2 to +1
32) Find out the major product from the following reaction.

a)

b)

33) Match List I with List II

	List I Coordination entity		List II Wavelength of light absorbed in nm
a.	$\left[\mathrm{Cocl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$	i.	310
b.	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	ii.	475
c.	$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	iii.	535
d.	$\left[\mathrm{cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$	iv.	600

Choose the correct answer from the questions given below:
a) a-ii, b-iii, c-iv, d-i
b) a-iv, b-i, c-iii, d-ii
c) a-iii, b-i, c-ii, d-iv
d) a-iii, b-ii, c-i, d-iv
34) Statement I: Dipole moment is a vector quantity and by convention it is depicted by a small arrow with tail on the negative centre and head pointing towards the positive centre.

Statement II: The crossed arrow of the dipole moment symbolizes the direction of the shift of charges in the molecules.

In the light of the above statements, choose the most appropriate answer from the options given below:
a)

Both Statement I and Statement II are correct
b)

Statement I is correct but Statement II is incorrect
c) Both Statement I and Statement II are incorrect
d) Statement I is incorrect but Statement II is correct
35) Which one among the following metals is the weakest reducing agent?
a) Rb
b) Li
c) K
d) Na
36)

Match List I with List II

	List I		List II
a.	Cobalt catalyst	i.	$\left(\mathrm{H}_{2}+\mathrm{Cl}_{2}\right)$ production
b.	Syngas	ii.	Water gas production
c.	Nickel catalyst	iii.	Coal gasification
d.	Brine solution	iv.	Methanol production

Choose the correct answer from the options given below:
a) a-iv, b-iii, c-ii, d-i
b) $\mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{iii}, \mathrm{c}-\mathrm{iv}, \mathrm{d}-\mathrm{i}$
c) $\mathrm{a}-\mathrm{iv}, \mathrm{b}-\mathrm{iii}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{ii}$
d) a-iv, b-i, c-ii, d-iii
37) Which of the following represents the correct order of metallic character of the given elements?
a) $\mathrm{Be}<\mathrm{Si}<\mathrm{K}<\mathrm{Mg}$
b) $\mathrm{K}<\mathrm{Mg}<\mathrm{Be}<\mathrm{Si}$
c) $\mathrm{Be}<\mathrm{Si}<\mathrm{Mg}<\mathrm{K}$
d) $\mathrm{Si}<\mathrm{Be}<\mathrm{Mg}<\mathrm{K}$
38) Given below are two statements:

Statement I: In froth floatation method a rotating paddle agitates the mixture to drive air out of it.

Statement II: Iron pyrites are generally avoided for extranction of iron due to environmental reasons

In the light of the above statements, choose the correct answer from the options given below:
a) Both Statement I and Statement II are false
b) Statement I is true but Statement II is false
c) Both Statement I and Statement II are true
d) Statement I is false but Statement II is true
39) Given below are two statements, one is labelled as Assertion A and the other is labelled as

Reason R

Assertion A: The alkali metals and their salts impart characteristic colour to reducing flame.

Reason R: Alkali metals can be detected using flame tests.

In the light of the above statements, choose the most appropriate answer from the options given below
a) A is not correct but R is correct
b) Both A and R are correct and R is the
p) correct explanation of A
c) Both A and R are correct but R is NOT the correct explanation of A
d) A is correct but R is not correct
40) Match List I with List II

	List I (Name of polymer)		List II (Uses)
a.	Glyptal	i.	Flexible pipes
b.	Neoprene	ii.	Synthetic wool
c.	Acrilan	iii.	Paints and Lacquers
d.	LDP	iv.	Gaskets

Choose the correct answer from the options given below:
a) a-iii, b-ii, c-iv, d-i
b) a-iii, b-iv, c-ii, d-i
c) a-iii, b-i, c-iv, d-ii
d) a-iii, b-iv, c-i, d-ii
41) What is the mass ratio of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right.$ molar mass $\left.62 \mathrm{~g} / \mathrm{mol}\right)$ required for making 500 g of 0.25 molal aqueous solution and $\mathbf{2 5 0} \mathbf{~ m L}$ of 0.25 molal aqueous solution?
a) $3: 1$
b) $1: 2$
c) $2: 1$
d) $1: 1$
42) Match List I with List II

	List I (Amines)		List II $\left(\right.$ PK $\left._{\mathrm{b}}\right)$
a.	Aniline	i.	3.25
b.	Ethanamine	ii.	3.00
c.	N-Ethylethanamine	iii.	9.38
d.	N, N-Diethylethanamine	iv.	3.29

Choose the correct answer from the options given below:
a) a-iii, b-iv, c-ii, d-i
b) a-iii, b-ii, c-i, d-iv
c) a-iii, b-ii, c-iv, d-i
d) a-i, b-iv, c-ii, d-iii
43) ' A ' in the given reaction is

a)

b)

c)

d)

44) Match List I with List II

	List I Isomeric pairs		List II Type of isomers
a.	Propanamine and N- Methylethanamine	i.	Metamers
b.	Hexan-2-one and Hexan-3-one	ii.	Positional isomers
c.	Ethanamide and Hydroxyethanimine	iii.	Functional isomers
d.	o-nitrophenol and p- nitrophenol	iv.	Tautomers

Choose the correct answer from the options given below.
a) a-iii, b-i, c-iv, d-ii
b) a - iii, b-iv, c-i, d-ii
c) $a-i v, b-i i i, c-i, d-i i$
d) $a-i i, b-i i i, c-i, d-i v$
45) Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason \mathbf{R}

Assertion A: Carbon forms two important oxides - CO and $\mathrm{CO}_{2}, \mathrm{CO}$ is neutral whereas CO_{2} is acidic in nature

Reason R: CO_{2} can combine with water in a limited way to form carbonic acid, while CO is sparingly soluble in water

In the light of the above statements, choose the most appropriate answer from the options given below

Both A and R are correct and R is the
a) correct explanation of A

Both A and R are correct but R is NOT the
b) correct explanation of A
c) A is not correct but R is correct
d) A is correct but R is not correct
46) The isomeric deuterated bromide with molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{DBr}$ having two chiral carbon atoms is

2-Bromo-1-deutero-
2-Bromo-3-
a) 2-methylpropane
2-Bromo-1-
c) deuterobutane
b) deuterobutane
2-Bromo-2-
d) deuterobutane
47) When the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$ changes by a factor of 1000, the value of pH of the solution
decreases by 2
a) units
c)
decreases by 3
units
b) increases by 2 units
d) increases by 1000
48) A chloride salt solution acidified with dil HNO_{3} gives a curdy white precipitate, [A], on addition of AgNO_{3}.

[A] on treatment with $\mathrm{NH}_{4} \mathbf{O H}$ gives a clear solution B

A and B are respectively
$\mathrm{H}\left[\mathrm{AgCl}_{3}\right]$ \&
a) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
b) $\mathrm{AgCl} \&$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
c) $\mathrm{H}\left[\mathrm{AgCl}_{3}\right] \&\left(\mathrm{NH}_{4}\right)$ $\left[\mathrm{Ag}(\mathrm{OH})_{2}\right]$
d) $\left[\mathrm{Ag}(\mathrm{OH})_{2}\right]$ $\mathrm{AgCl} \&\left(\mathrm{NH}_{4}\right)$
49) A. Ammonium salts produce haze in atmosphere.

B. Ozone gets produced when atmospheric

 oxygen reacts with chlorine radicals.C. Polychlorinated biphenyls act as cleansing solvents.
D. Blue baby syndrome occurs due to the presence of excess of sulphate ions in water.

Choose the correct answer from the options given below:
a) A and D only
b) B and C only
c) A, B and C only
d) A and C only
50) Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Butylated hydroxy anisole when added to butter increases its shelf life.

Reason R: Butylated hydroxy anisole is more reactive towards oxygen than food.

In the light of the above statements, choose the most appropriate answer from the options given below
a) A is not correct but R is correct Both A and R are correct but R is NOT the
b) correct explanation of A
c) Both A and R are correct and R is the correct explanation of A
d) A is correct but R is not correct
51) Number of hydrogen atoms per molecule of a hydrocarbon A having 85.8 \% carbon is
(Given: Molar mass of $A=84 \mathrm{~g} \mathrm{~mol}^{-1}$))
52) Total number of moles of AgCl precipitated on addition of excess of AgNO_{3} to one mole each of the following complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right] \mathrm{Cl}$, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2},\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$ is)
53) The number of pairs of the solutions having the same value of the osmotic pressure from the following is
(Assume 100\% ionization).
A. $0.500 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$ and $0.25 \mathrm{M} \mathrm{KBr}(\mathrm{aq})$
B. $0.100 \mathrm{M} \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{aq})$ and 0.100 M $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
C. $0.05 \mathrm{M} \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{aq})$ and $0.25 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$
D. $0.15 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$ and $0.1 \mathrm{M} \mathrm{BaCl}_{2}(\mathrm{aq})$
E. $0.02 \mathrm{M} \mathrm{KCl}, \mathrm{MgCl}_{2}, 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ and 0.05 M KCl (aq)
)
54) Based on the given figure, the number of correct statement's is/are

Liquid mo

A. Surface tension is the outcome of equal attractive and repulsive forces acting on the liquid molecule in bulk
B. Surface tension is due to uneven forces acting on the molecules present on the surface.
C. The molecule in the bulk can never come to the liquid surface.
D. The molecules on the surface are responsible for vapour pressure if the system is a closed system.
)
55) 28.0 L of CO_{2} is produced on complete combustion of 16.8 L . gaseous mixture of ethene and methane at $25^{\circ} \mathrm{C}$ and 1 atm. Heat evolved during the combustion process is \qquad kJ

Given: $\Delta \mathrm{H}_{\mathrm{c}}\left(\mathrm{CH}_{4}\right)=-900 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H_{c}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=1400 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
56) The number of given orbitals which have electron density along the axis is
$\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}, \mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{xz}}, d_{z^{2}}, d_{x^{2}-y^{2}}$)
57) The number of incorrect statement's from the following is/are
A. Water vapours are adsorbed by anhydrous calcium chloride.
B. There is a decrease in surface energy during adsorption.
C. As the adsorption proceeds, $\Delta \mathrm{H}$ becomes more and more negative.
D. Adsorption is accompanied by decrease in entropy of the system.
)
58) Number of compounds giving (i) red colouration with ceric ammonium nitrate and also (ii) positive iodoform test from the following is

59) $\mathrm{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}(\mathrm{~g})(1$ bar $)\left|\mathrm{H}^{+}(\mathrm{aq})(1 \mathrm{M})\right| \mid \mathrm{M}^{3+}(\mathrm{aq}), \mathrm{M}^{+}$ (aq) $\mid \mathrm{Pt}(\mathrm{s})$

The $\mathrm{E}_{\text {cell }}$ for the given is 0.1115 V at 298 K when The value of a is \qquad
Given : $E^{\theta}{ }_{M^{3+} / M^{+}}=0.2 V$
$\frac{2.303 R T}{F}=0.059 \mathrm{~V}$
)
60) A first order reaction has the rate constant, $k=$ $4.6 \times 10^{-3} \mathrm{~s}^{-1}$. The number of correct statement/s from the following is/are,

Given: $\log 3=0.48$
A. Reaction completes in 1000 s .
B. The reaction has a half-life of 500 s .
C. The time required for 10% completion is 25 times the time required for 90% completion.
D. The degree of dissociation is equal to $\left(1-e^{-}\right.$ kt)
E. The rate and the rate constant have the same unit.
)

MATHEMATICS

61) The number of numbers, strictly between 5000 and 10000 can be formed using the digits $1,3,5,7,9$ without repetition, is
a) 12
b) 120
c) 6
d) 72
62)

Let $A=\left[\begin{array}{ll}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]$, where $i=\sqrt{-1}$

If $M=A^{T} B A$, then the inverse of the matrix $A M^{2023} A^{T}$ is
a) $\left[\begin{array}{cc}1 & -2023 i \\ 0 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 0 \\ 2023 i & 1\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 0 \\ -2023 i & 1\end{array}\right]$
63) Let T and C respectively be the transverse and conjugate axes of the hyperbola $16 x^{2}$ $-y^{2}+64 x+4 y+44=0$. Then the area of the region above the parabola $x^{2}=y+4$, below the transverse axis T and on the right of the conjugate axis C is :
a) $4 \sqrt{6}+\frac{44}{3}$
b) $4 \sqrt{6}-\frac{28}{3}$
c) $4 \sqrt{6}-\frac{44}{3}$
d) $4 \sqrt{6}+\frac{28}{3}$
64) Let $f(x)=2 x^{n}+\lambda, \lambda \in R, n \in N, f(4)=133$, $f(5)=255$. Then the sum of all the positive integer divisors of $(f(3)-f(2))$ is
a) 61
b) 58
c) 59
d) 60
65) Let A, B, C be 3×3 metrices such that A is symmetric and B and C are skewsymmetric Consider the statements
(S1) $A^{13} B^{26}-B^{26} A^{13}$ is symmetric
(S2) $A^{26} C^{13}-C^{13} A^{26}$ is symmetric
Then,
a) Only S2 is true
b) Both S1 and S2 are
false
c) Both S1 and S2 are
true
d) Only S1 is true
66) The shortest distance between the lines x $+1=2 y=-12 z$ and $x=y+2=6 z-6$ is
a) 2
b) $\frac{3}{2}$
c) $\frac{5}{2}$
d) 3
67) Let $\vec{a}=-\hat{i}-\hat{j}+\hat{k}, \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{i}-\hat{j}$.
Then $\vec{a}-6 \vec{b}$ is equal to
a) $3(\hat{i}+\hat{j}-\hat{k})$
b) $3(\hat{i}-\hat{j}-\hat{k})$
c) $3(\hat{i}+\hat{j}+\hat{k})$
d) $3(\hat{i}-\hat{j}+\hat{k})$
68) If the function
$f(x)= \begin{cases}(1+|\cos x|) \frac{\lambda}{|\cos x|}, & 0<x<\frac{\pi}{2} \\ \mu, & x=\frac{\pi}{2} \\ \frac{\cot 6 x}{e^{\cot t x}}, & \frac{\pi}{2}<x<\pi\end{cases}$
is continuous at $x=\frac{\pi}{2}$, then $6 \lambda+6 \log _{\mathrm{e}} \mu+\mu^{6}-$ $e^{6 \lambda}$ is equal to
a) 8
b) $2 e^{4}+8$
c) 10
d) 11
69) The integral $16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}$ is equal to
a) $\frac{11}{6}+\log _{e} 4$
b) $\frac{11}{12}-\log _{e} 4$
c) $\frac{11}{12}+\log _{e} 4$
d) $\frac{11}{6}-\log _{e} 4$
70) The equations of two sides of a variable triangle are $x=0$ and $y=3$, and its third side is a tangent to the parabola $\mathbf{y}^{2}=6 \mathrm{x}$. The locus of its circumcentre is:
$4 y^{2}-18 y-3 x-$
$4 y^{2}-18 y+3 x+$
a) $18=0$
b) $18=0$
$4 y^{2}+18 y+3 x+$
$4 y^{2}-18 y-3 x+$
c) $18=0$
d) $18=0$
71) Let $\Delta, \nabla \in\{\wedge, v\}$ be such that $(p \rightarrow q) \Delta(p$ $\nabla \mathrm{q})$ is a tautology. Then
a) $\Delta=\wedge, \nabla=\wedge$
b) $\Delta=\vee, \nabla=\wedge$
c) $\Delta=\wedge, \nabla=\vee$
d) $\Delta=v, \nabla=\vee$
72) The foot of perpendicular of the point (2, $0,5)$ on the line $\frac{x+1}{2}=\frac{y-1}{5}=\frac{z+1}{-1}$ is $(\boldsymbol{\alpha}, \boldsymbol{\beta}$, γ). Then, which of the following is NOT correct?
a) $\frac{\alpha \beta}{\gamma}=\frac{4}{15}$
b) $\frac{\gamma}{\alpha}=\frac{5}{8}$
c) $\frac{\beta}{\gamma}=-5$
d) $\frac{\alpha}{\beta}=-8$
73) Let $\mathbf{f}: \mathbf{R} \mathbf{- R}$ be a function defined by
$f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$, for some m, such that the range of f is $[0$, 2]. Then the value of m is
a) 5
b) 3
c) 4
d) 2
74) If the four points, whose position vectors are $3 \hat{i}-4 \hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-\hat{k},-2 \hat{i}-\hat{j}+3 \hat{k}$ and $5 \hat{i}-2 \alpha \hat{j}+4 \hat{k}$ are complanar, then α is equal to
a) $\frac{73}{17}$
b) $-\frac{73}{17}$
c) $\frac{107}{17}$
d) $-\frac{107}{17}$
75) Let the function $f(x)=2 x^{3}+(2 p-7) x^{2}+$ $3(2 p-9) x-6$ have a maxima for some value of $x<0$ and a minima for some value of $x>0$. Then, the set of all values of p is
a) $\left(-\frac{9}{2}, \frac{9}{2}\right)$
b) $\left(0, \frac{9}{2}\right)$
c) $\left(-\infty, \frac{9}{2}\right)$
d) $\left(\frac{9}{2}, \infty\right)$
76) Let z be a complex number such that $\left|\frac{z-2 i}{z+i}\right|=2, z \neq-i$. Then z lies on the circle radius 2 and centre.
a) $(0,2)$
b) $(0,0)$
c) $(2,0)$
d) $(0,-2)$
77) Let \mathbf{N} be the sum of the numbers appeared when two fair dice are rolled and let the probability that $\mathrm{N}-2, \sqrt{3 N}, \mathbf{N}+2$ are in geometric progression be. Then the value of k is
a) 16
b) 2
c) 4
d) 8
78) The number of functions
$f:\{1,2,3,4\} \rightarrow\{a \in: Z|a| \leq 8\}$
satisfying $f(n)+\frac{1}{n} f(n+1)=1, \forall \mathbf{n}$ $\in\{1,2,3\}$ is
a) 2
b) 3
c) 4
d) 1
79) Let $y=y(t)$ be a solution of the differential equation
$\frac{d y}{d t}+\alpha y=\gamma e^{-\beta t}$
where, $\alpha>0, \beta>0$ and $\gamma>0$. Then $\lim _{t \rightarrow \infty} \mathbf{y}(\mathrm{t})$
a) is 0
b) does not exist
c) is 1
d) is -1
80) $\sum_{k=0}^{6}{ }^{51-k} C_{3}$ is equal to
a) ${ }^{51} C_{3}-{ }^{45} C_{3}$
b) ${ }^{51} C_{4}-{ }^{45} C_{4}$
c) ${ }^{52} C_{4}-{ }^{45} C_{4}$
d) ${ }^{52} C_{3}-{ }^{45} C_{3}$
81) If $\int_{\frac{1}{3}}^{3}\left|\log _{e} x\right| d x=\frac{m}{n} \log _{e}\left(\frac{n^{2}}{e}\right)$, where m and n are coprime natural numbers, then $m^{2}+n^{2}-5$ is equal to \qquad
)
82) Let $\mathrm{a} \in \mathrm{R}$ and let α, β be the roots of the equation $x^{2}+60^{\frac{1}{4}} x+a=0$

If $\alpha^{4}+\beta^{4}=-30$, then the product of all possible values of a is
83) If the shortest distance between the line joining the points $(1,2,3)$ and $(2,3,4)$ and the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-2}{0}$ is α, then $28 \alpha^{2}$ is equal to
)
84) For the two positive numbers a, b, if a, b and $\frac{1}{18}$ are in a geometric progression, while $\frac{1}{a}, 10$ and $\frac{1}{b}$ are in an arithmetic progression, then $16 a+12 b$ is equal to)
85) The remainder when $(2023)^{2023}$ is divided by 35 is
)
86) Suppose Anil's mother wants to give 5 whole fruits to Anil from a basket of 7 red apples, 5 white apples and 8 oranges. If in the selected 5 fruits, at least 2 oranges, at least one red apple and at least one white apple must be given, then the number of ways, Anil's mother can offer 5 fruits to Anil is)
87) Points $P(-3,2), Q(9,10)$ and $R(\alpha, 4)$ lie on a circle C with PR as its diameter. The tangents to C at the points Q and R intersect at the point S. If S lies on the line $2 x-k y=1$, then k is equal to)
88) If m and n respectively are the numbers of positive and negative values of θ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos \frac{\theta}{2} \cos \frac{9 \theta}{2}$, then mn is equal to
)
89) 25% of the population are smokers. A smoker has 27 times more chances to develop lung cancer than a non smoker. A person is diagnosed with lung cancer and the probability that this person is a smoker is $\frac{k}{10}$. Then the value of k is
)
90) A triangle is formed by X-axis, Y-axis and the line $3 x+4=60$. Then the number of points $P(a, b)$ which lie strictly inside the triangle, where a is $a n$ integer and b is a multiple of a is)

